Сравнительная таблица теплопроводности современных строительных материалов

Что такое теплопроводность и термическое сопротивление — какие факторы оказывают влияние, особенности выбора стройматериалов на основе этих показателей. Коэффициент теплопроводности у материалов из бетона

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материаловДиаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времениТеплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Анализ гигроскопичности теплоизоляции

Все теплоизоляционные материалы обладают общим минусом. У них есть способность впитывать влагу из воздуха. Эта способность называется гигроскопичностью теплоизоляции. Такой недостаток необходимо ликвидировать, чтобы эффективность утеплителя оставалась на высоком уровне. Гигроскопичность измеряется процентным соотношением массы поглощенной влаги к массе веса материала.

Наименование продукта Водопоглощение,% от массы
Минвата 1.5
Пенопласт 3
Эковата 1
Пеноизол 18

Из данной таблицы видно, что у пеноизола высокий процент поглощения влаги. Но при этом пеноизол способен равномерно распределять и выводить воду. А это значит, что он не теряет своих свойств. Минеральная вата, напротив, имеет низкий процент гигроскопичности. Но если влага попадет в ее волокна, то удерживается внутри. Коэффициент теплопроводности понижается.

От чего зависит теплопроводность?

Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.

Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.

Теплопроводность материалов. Как считают? Сравнительная таблица

Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.

В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкцийКоэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 – 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 – 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 – 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 – 400 кг/м3 0,085-0,1
Пеноблок 100 – 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 – 220 кг/м3 0,057-0,063
Пеноблок 221 – 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум 0
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

  1. Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

    Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизоляторомЗамкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

  2. Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

    Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностьюВысокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  3. Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
«Холодно, холодно и сыро. Не пойму, что же в нас остыло...» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Как правильно выбрать утеплитель?

При выборе утеплителя нужно обращать внимание на: ценовую доступность, сферу применения, мнение экспертов и технические характеристики, являющиеся самым важным критерием.

Основные требования, предъявляемые к теплоизоляционным материалам:

  • Теплопроводность.

Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.

сравнение материалов по теплопроводности и толщине

Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы. Теплопроводность одного и того же материала может изменяться в зависимости от плотности.

Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.

Как плотность и теплопроводность влияют на теплоизоляцию

Существует таблица значений теплопроводности. Это значение плотности и предельной рабочей температуры теплоизоляции, в форме плит и сегментов.

Руководствуясь данной таблицей потребитель сможет сравнить все характеристики теплоизолятора и выбрать тот, который будет соответствовать требованиям.

Таблица

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1Таблица коэффициентов теплоотдачи материалов. Часть 1Проводимость тепла материалов. Часть 2Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных половТаблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичейТеплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПроводимость тепла дереваПрочность разных пород древесиныПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материаловСравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

Таблица проводимости тепла воздушных прослоекТаблица проводимости тепла воздушных прослоек

Сравнение теплоизоляционных материалов

Самые популярные материалы в монтаже это пенополиуретан и пеноизол. Широкое распространение данных материалов в строительстве обусловлено низкой стоимостью и отличной теплоизоляцией.

Гидроизолирующие свойства пеноизола позволяют использовать его как кровельный материал.

Эффективнее пенополиуретанов только вакуумная изоляция, а это очень дорого.

Пенополиуретан может применятся в готовых теплоизоляционных деталях-блоках, панелях. А может использоваться в специальных составах, которые напыляются практически на любые поверхности: дерево, стекло, металл, бетон, кирпич, краску. В следствии чего нет необходимости изготавливать крепеж для изоляции.

Пенополистирол составляет конкуренцию пенополиуретану. Благодаря малому весу даже толстый слой пенопласта не оказывает существенную нагрузку на несущие конструкции. Состоит из закрытых ячеек, плотно структурирован.

Утеплять пенопластом можно:

  • Наружные стены;
  • Крыши;
  • Полы;
  • Трубопроводные магистрали.

Для монтажа пенополистирола на вертикальные участки не обязательно крепить каркас. Жесткие листы утеплителя можно приклеивать к поверхности или крепить механическим способом.

Еще одним из самых популярных современных материалов является фольгированный полиэтилен.  Нижний слой покрыт вспененным полиэтиленом. Верхний слой покрыт алюминиевой фольгой, отражающей тепло до 97%.

Этот вид утеплителя применяется в строительстве теплого пола, для шумоизоляции вентиляционных шахт, трубопроводов, расширительных баков. Материал не пропускает пар и воду. Одновременно изолирует тепло и звук. При этом укладывается тонким слоем.

Один слой полиэтилена в 4 мм, способен заменить минеральную вату толщиной 8 см.

Сравнение с помощью таблицы

N Наименование Плотность Теппопроводность Цена , евро за куб.м. Затраты энергии на
кг/куб.м мин макс Евросоюз Россия квт*ч/куб. м.
1 целлюлозная вата 30-70 0,038 0,045 48-96 15-30 6
2 древесноволокнистая плита 150-230 0,039 0,052 150 800-1400
3 древесное волокно 30-50 0,037 0,05 200-250 13-50
4 киты из льняного волокна 30 0,037 0,04 150-200 210 30
5 пеностекло 100-150 0.05 0,07 135-168 1600
6 перлит 100-150 0,05 0.062 200-400 25-30 230
7 пробка 100-250 0,039 0,05 300 80
8 конопля, пенька 35-40 0,04 0.041 150 55
9 хлопковая вата 25-30 0,04 0,041 200 50
10 овечья шерсть 15-35 0,035 0,045 150 55
11 утиный пух 25-35 0,035 0,045 150-200
12 солома 300-400 0,08 0,12 165
13 минеральная (каменная) вата 20-80 0.038 0,047 50-100 30-50 150-180
14 стекповопокнистая вата 15-65 0,035 0,05 50-100 28-45 180-250
15 пенополистирол (безпрессовый) 15-30 0.035 0.047 50 28-75 450
16 пенополистирол экструзионный 25-40 0,035 0,042 188 75-90 850
17 пенополиуретан 27-35 0,03 0,035 250 220-350 1100

Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.

Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.

Сравнительные характеристики ватных материалов

По своим характеристикам минеральная вата похожа на пенополистирол. Но в отличие от пенополистирола она является негорючим материалом. Минеральная вата обладает малым весом и доступной ценой.

Практически не меняет своих свойств в процессе эксплуатации. Поэтому если выбирать между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней. Каменная вата имеет схожие характеристики с минеральной ватой, но более высокую стоимость по сравнению с аналогами. Выпускается в рулонах, матах и блоках. Имеет разную жесткость и плотность.

Эковата на сегодняшний день применяется довольно часто. Имеет приемлемую цену и легко монтируется, но отличается тем, что во время эксплуатации повышается теплопроводность. Для крепления необходимо специальное оборудование. Со временем возможна усадка материала.

Где используются сыпучие и органические материалы

В строительстве применяются сыпучие и органические материалы. К сыпучим относится вспученный перлит.

Характеристики:

  • Негорючий;
  • Экологически чистый материал;
  • Не восприимчив к воде.

Используется для производства легких бетонов и теплоизоляционных изделий, для утепления перекрытий и полов. Больше подходят для горизонтальных поверхностей.

К органическим материалам относятся лен, пробковое покрытие. Они безопасны для людей, но относятся к горючим материалам. Поэтому выгодными по своим характеристикам материалами для отделки можно назвать пенополиуретан, пеноизол и минеральную вату. Они доступны потребителю по стоимости, практичны, имеют высокий срок службы.

Идеальный теплый дом

От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...